寻迹小车

一、绪论


1.1 实验背景
1.1.1 问题的情景

长期以来,由于我国是人口大国而且工业基础薄弱,因此早期在我国机器人的发展受到一定的限制。然而随着制造业工人的人力成本的不断上升与社会自动化程度的不断提高,我国也开始着重于发展机器人,并且也取得了较大的进步。在 1995 年,我国沈阳自动化所开始研制HT—100A点焊机器人,是我国较早的机器人了,如图1所示;此后,沈阳新松公司研发出了6 kg弧焊机器人,此机器人不仅实用,而且轻便,如图 2 所示;之后,哈尔滨工业大学机器 人研究所也研发出了便携式机器人,此机器人具有 6 自由度,增强了焊接能力,成为在恶劣环境中实现焊接功能的重要设备。总之,在国家“863 计划”与“十一五”计划的指导下,我国机器人的设计取得了飞速发 展,甚至在机器人的某些关键部件的设计已经接近于世界先进水平,并在世界工业机器人领域已经占有一席之地了。

1

2

1.1.2 实验的目的

目前,机器人的发展趋势非常的迅猛,机器人可以替代人类去从事高危险的工作,减轻了人类的劳动强度。本文通过对机器人的发展史进行简要的介绍,阐明了我国发展机器人的必要性。同时,对于我国的发展而言,我国正处于工业化进程的关键时期,将来的高强度、高危险行业的工人数量将会急剧的下降,机器人将会迎来新的“春天”,所以机器人的发展仍拥有巨大的发展空间。同时,由于我国各机器人的厂商对于机器人的研发能力与金钱投资的不同,在我国的机器人市场上的竞争也会愈演愈烈,最终也将形成我国的机器人研发市场。总之,在未来的几十年里,相信重点发展机器人将会成为社会的发展趋势,不久机器人将会引领未来,加入到我国现代化建设的行列中。小车,也就是轮式机器人,作为以学科交叉、产品创新为特色的明月班同学,切入这个产业不失为优秀的选择,故而选取小车为切入点了解相关知识。

1.2 实验内容
1.2.1 使用51单片机控制及其元器件

STC89C52控制板芯片、1.5V干电池x4、L298N电机驱动板x1、红外循迹模块、直流电机x2以及搭建材料若干;

3

1.2.2使用FPGA开发板控制及其元器件

Cyclonell EP2C5T144控制板芯片1.5V干电池x4、L298N电机驱动板x1、红外循迹模块、直流电机x2以及搭建材料若干;

4


二、实现过程


2.1 总体工作原理简释
2.1.2 红外循迹模块

第一步,位于小车前端的红外模块会释放红外线探测下方是否为黑色区域,并将相应的高低电平信号传递至控制模块(51单片机/FPGA开发板)处理,控制模块随后将发送信息至L298N电机驱动的控制模块,并由此控制左右两轮的转动速度以及转动方向,从而实现对黑线的反应和循迹。

作为电机的驱动模块,该模块对控制小车移动有着重要且直接的作用。

5

利用红外发射器向地面发射红外线,并用传感器接收由地面反射的红外线。当红外接收模块下方为黑色轨迹时,红外线被黑色轨迹吸收,传感器没有接收到红外线,红外循迹模块输出低电平到单片机。反之,传感器接收到红外线,红外循迹模块输出高电平到单片机。可通过红外循迹模块输出的信号来判断小车是否偏离轨迹。可调电阻可以调节传感器的灵敏度,易于调试。使用红外循迹模块方案也易于实现,红外循迹方案相比于摄像循迹成本更加便宜,软件设计更加简单,设计制作周期短,具备一定可靠性。

对于左电机,共有输入ENA、IN1、IN2,输出OUT1(黑线)、OUT2(红线)、其信号与运动对应如下:(0,X,X)停止、(1,0,0)停止、(1,1,0)正传、(1,0,1)反转、(1,1,1)停止;

对于右电机,共有输入ENB、IN3、IN4,输出OUT3(黑线)、OUT4(红线),其信号与运动对应如下:(0,X,X)停止、(1,0,0)停止、(1,1,0)反传、(1,0,1)正转、(1,1,1)停止。

2.1.3 L298N电机驱动模块

6

阅读更多