斯特林发动机设计报告

1 设计过程与方案概述

任务要求为设计一个斯特林发动机,大部分零件采用金属加工的方式,最后能够提供0.5w的功率输出。有以下方面的目标:设计一个能够满足做功要求的气缸,设计与之配套的连杆机构,设计动力输出装置。

针对以上要求,我们先采用β型发动机作为模板进行设计,先设计气缸,后进行相关的理论计算和仿真,最后根据计算和仿真结果对设计进行修改,对修改好的设计进行加工,经过实地组装测试之后再对出现的问题进行分析和修改,最后得到能够满足要求的发动机。

中途进行测试的时候发现β型气缸相对于α来说加工有一定难度,即满足公差设计的加工也可能由于做功活塞和配气活塞之间的差距导致漏气,使得整体运行时存在一定的气体溢出,并未能推动活塞做功。所以我们后续改用了β,α两种发动机并行设计的方式,先在α型上测试成功后,再利用吸取到的经验和设计方式来完成β的设计。

最终测试结果如下:β发动机不能够正常运行,但是气缸的密封基本完成,α型发动机能正常运转,且能够点亮一个额定功率为0.5w的电灯泡,经电表测试约为一个3.2V的电压源,但在实际测试时,没有能够达到0.5W的输出功率。

2 气缸设计与加工设计

2.1 气缸设计与做功计算

单独对气缸进行分析和设计时,采用的计算方式是先估算转速和单个做功冲程所能做的功,作为一个机械功的功率来源,要先保证功率来源大概约为0.5w的3到5倍,使得为后续机械装置带动发动机皮带留够足够的功率。

气缸的设计关键在于密封性,体现在加工方面就是公差的设计,如果产生的偏差导致气缸和活塞的成品配合不好,则在加热过程中气体就会溢出,使得整个气缸无法产生较大的温差,使得内外压强之间的差距很小,自然无法推动活塞对外做功。在进行气缸设计时,气缸的直径也是一个关键的指标,如果直径过大,加热时间过长,则无法充分受热,无法产生推力,当直径过小时,压强产生的推力会小很多,影响最终的输出功率,我们根据之前学长的发动机进行了简单的估算,直径在1cm-2cm为宜,而公差设计要求气缸为负公差-0.02mm,活塞为正公差+0.02mm,即使加工得没有特别准确,也可以保证通过简单的手动打磨和不断测试可以使得气缸和活塞刚好匹配。

由于高度对称的模型气缸设计,可以建立温度随模型位置的函数t(x),以及空气密度随温度变化的函数ρ(t),则根据理想气体方程PV=nRT,进行变形,得到PV=ρSX/MRT,调整位置得到,PV=S/MR*(ρXT),变为微分形式可得到,PSdx=S/MR*(ρ(x)T(x)dx),变形得,FSdx=S/MR*(ρ(x)T(x)dx)即dw=S/MR*(ρ(x)T(x)dx),由于该过程恒处于大气压下,将各物理常数,代入积分后可直接得到结果。

以下为matlab计算步骤:先根据图进行采样,计算并拟合出温度位置曲线T(x),再代入公式进行计算,β型的计算过程过程如下图:

则单次做功冲程能够对活塞做功1.07J,也就是说在转速约为5-8转每秒时,完全可以提供足够的功率带动后续的传动装置和发电机。

对于α的计算如下图:

S]GBCPA@4I\$DN0RWP4A%X(2_tmb{width=”5.759722222222222in”
height=”2.3715277777777777in”}

则单次做功冲程能够对活塞做功0.9152J,也就是说在转速约为8-12转每秒时,完全可以提供足够的功率带动后续的传动装置和发电机。

2.2 密封、公差、轴承、振动的设计

2.2.1 振动

在经过组装测试后,我们观察了其运动时的振动情况,并对振动来源进行分析,从而提出了一些减少振动的方案。

对于β型的振动分析:

IMG_256{width=”2.42882217847769in”
height=”3.2392957130358706in”}

可以看到,主要振动的来源在于两连杆间半个周期收活塞的推力传导产生对于中轴形成的错位的力矩,此外,飞轮转动使得由角动量产生的对抗上述力矩的回正力矩(类似惯性力)。综合上述过程,整体振动的来源就是上述周期性力矩的合力矩,但由于存在相互抵消的部分,只要飞轮和连杆的设计配合比较好,就能减小振动的影响,即飞轮设计的大一些,连杆的宽度设计得小一些。

对于β型的振动分析:

可以看到由于α冷热缸分开且加入回热器后,会由于气体做功出现两组相反的周期性旋转力矩,且时间错开,这导致会产生一个稳定的围绕支撑杆的左右转动进而引起振动,且最终呈现的合力矩会使在如上图方向时使发动机整体逆时针旋转,对整体的稳定性产生极大的影响。对此我们采用了相应的解决方案,在下部固定橡胶的减震底座,使底座与地面摩擦力增大,不使其绕固定轴进行旋转,同时减少其振动。

阅读更多

课题:斯特林发动机机械系统动力学仿真

一、初始设计参数与热力学计算

对于我们设计的β型斯特林发动机,提出了如下的设计目标:

物理参数 数值(单位)
输出功率 0.5W

在我们初步设计的斯特林发动机(模型如下图所示)中,相关的尺寸参数如下:

物理参数 数值(单位)
排气活塞行程h1 42mm
做功活塞行程h2 45mm
相位角α 85°
气缸内径r 10mm
排气活塞半径r0 8mm
气缸内气体压强最小值Pmin 101300Pa(与环境大气压一致)

图1:设计三维概念模型

将设计好的模型导入Ansys软件中进行静态热力学的仿真(如下图所示),可以得到气体温度的状态参数如下:

压缩空间气体温度Tc 439K
膨胀空间气体温度Te 611K

图2:Ansys静态热力学仿真

根据史密特理论的相关计算公式,可以编写相应程序,由以上参数为基础计算并绘制P-V图以及单次循环所作功,代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
afa=2*85*pi/360;
theta=0:0.01:pi*2;
tc=439;
te=611;
l1=0.021;
h1=l1*2;
l2=0.0225;
h2=l2*2;
r=0.01;
r0=0.008;
vse=r0*r0*pi*h1;
vsc=r*r*pi*h2;
ve=vse.*(1-cos(theta))./2;
vb=(vse+vsc)./2-sqrt((vse.*vse+vsc.*vsc)./4-vse.*vsc.*cos(afa)./2);
vc=vse.*(1+cos(theta))./2+vsc.*(1-cos(theta-afa))./2-vb;
vr=(r*r-r0*r0)*0.02*pi;
tao=tc/te;
k=vsc/te;
xb=vb/vse;
x=vr/vse;
fai=atan(k.*sin(afa)./(1-tao-k.*cos(afa)));
s=tao+4.*tao.*x./(1+tao)+k+1-2.*xb;
b=sqrt(tao.*tao+2.*k.*(tao-1).*cos(afa)+k.*k-2.*tao+1);
deta=b./s;
pmin=101300;
p=pmin.*(1+deta)./(1-deta.*cos(theta-fai));
plot(rad2deg(theta),p);
xlabel('角度θ(°)');
ylabel('压强P(Pa)');
title('α=85°时θ-P图线');
v=ve+vr+vc;
figure;
plot(rad2deg(theta),v);
xlabel('角度θ(°)');
ylabel('体积V(m^3)');
title('α=85°时θ-V图线');
figure;
plot(v,p);
xlabel('体积V(m^3)');
ylabel('压强P(Pa)');
title('α=85°时P-V图线');
w=10000000*pmin.*vse.*pi.*deta.*(1-tao).*sin(fai).*sqrt(1-deta)./((1+sqrt(1-deta.*deta)).*sqrt(1+deta));
disp(w);

通过运行上述代码,可绘制出如下热力学数据图线,并计算出单次循环做功为**0.0523J**。

图3:α=85°时θ-P图线

图4:α=85°时θ-V图线

图5:α=85°时P-V图线

因此,若要达到设计目标的0.5W功率要求,需要转速达到rmin=0.5*60/0.0523≈573.6rpm

此外,以上设计参数所得到的P-V图线偏扁圆形,与常见的P-V图线形状有一定差异,这主要是与设定的初始相位角有关,若将相位角改为45°,则可以得出如下P-V图线,并可计算得出此时对应的单次循环做功为0.0608J,较先前有所提高;但在β型斯特林发动机中,相位角是由相关零件的设计直接确定的,故在后面的仿真中仍然保持相位角α=85°的设定。

图6:α=45°时P-V图线


二、Adams动力学仿真

在不考虑各类摩擦的情况下,对于基本的曲柄连杆传动机构来说,有如下基本公式:

图7:转矩公式

根据此公式可得到如下代码,绘制转矩变化曲线如下图:

1
2
3
4
5
6
7
8
9
10
ap=pi*l2*l2;
fp=ap.*(p-pmin);
tq=(sin(theta)-cos(theta)).*fp.*r;
t_qm=w/2/pi;
t_qm_(1,1:629)=t_qm;
figure;
plot(rad2deg(theta),tq,rad2deg(theta),t_qm_);
xlabel('角度θ(°)');
ylabel('转矩');
title('转矩变化曲线');

图8:转矩变化曲线,红线为力矩平均值

根据如下仿真步骤,将Fusion360建模软件中建立完成的模型导出为STEP格式,进入Adams仿真软件中进行进一步的动力学仿真。

图9:仿真步骤

在第一次仿真时,仅仅将原有模型中设计到传动的部分保留,并将简化后的模型导入仿真,主要反映出两大问题,第一时间进行了修改(以上给的参数均为该次修改后确定的):

(1)传动部分设计失误,主要表现为各个曲柄的转动不同轴而导致角速度不一致,从而无法达到稳定的压缩与膨胀之间的状态转换,即活塞体系无法完成循环;

阅读更多

课题:斯特林发动机热力循环计算及分析

根据选定的斯特林发动机类型确定具体的传动机构,开展斯特林发动机的热力循环计算;从最大化斯特林发动机单次循环的输出功角度出发,优化斯特林发动机系统所涉及的传动机构、相位角等参数

一、背景介绍

通过学习本课程,我们需要完成斯特林发动机的设计与制造过程,在此过程中掌握工程设计全流程中的基本技能。之所以选择斯特林发动机,是因为能够将热能转化为机械能,并具有以下特点:

  1. 效率高:斯特林发动机的热效率相对较高,与理论上最高热效率的卡诺循环相同,实际中可以达到30%以上,远高于传统内燃机;
  2. 噪音低:斯特林发动机工作过程中没有爆炸过程,工作过程相对平滑,噪音和振动较小;
  3. 热源多:斯特林发动机作为一种外燃机,可以直接利用任何可用热源,如太阳能、地热能与生物质能等可再生能源;
  4. 排放少:斯特林发动机在工作过程中没有直接燃烧,为闭口系统,工质环境友好,没有任何有害物排放;
  5. 寿命长:连续运行,安全可靠,对高温侧材料要求较高。

斯特林发动机的概念可以追溯到19世纪初,但由于技术限制和市场竞争,长期以来并没有像内燃机那样广泛应用。最近,随着对环保和能源效率的关注不断增加,斯特林发动机再次引起了一些研究兴趣,在水下动力、太阳能动力、空间站动力、热泵空调动力,车用混合推进动力等方面得到了广泛的研究与重视,并且已得到了一些成功的应用。

斯特林发动机按照结构可分为α型、β型和γ型三类,其中α型又称为双动力活塞式发动机,β型和γ型又称为配气活塞式发动机。

通过对于三种类型发动机的基本结构和工作原理的分析与比较,我们最终选择β型斯特林发动机进行实际设计制作。同时考虑到整体项目要求、制作难度与成本等方面,选择单作用斯特林发动机进行制作。

β型斯特林发动机属于配气活塞式发动机,基本结构中包含配气与动力(做功)两种活塞。其中,配气活塞只起到配气作用,并不对外做功,其上下两端压力一致,用于使工质在循环回路中来回流动;动力活塞上、下两腔气压差很大,必须进行密封处理。

斯特林发动机的基本工作原理为斯特林循环。理想的斯特林循环主要包括定温压缩、定容吸热、定温膨胀和定容放热共四个过程,其中两个为定温过程,两个为定容过程:

  1. 定温压缩:工作气体在活塞的压力作用下被压缩,使得气体温度降低;
  2. 定容吸热:压缩后的工作气体通过外部热源加热,吸收热能,温度升高;
  3. 定温膨胀:加热后的工作气体在活塞的推动下膨胀,产生机械功,带动发电机等设备工作;
  4. 定容放热:膨胀后的工作气体通过冷却器冷却,使其温度降低,回到压缩前的状态。

上述四个过程循环往复,共同构成斯特林循环。为了确定并验证我们所初步设计的发动机模型能否满足课题要求的最大输出功率达到0.5W,我们需要分析研究在设定条件(与实际设计结构一致)下单次斯特林循环的输出功,并通过计算结果返回迭代传动结构、尺寸与相位角等参数的设计与确定,以实现斯特林发动机单次循环输出功的最大化。


二、物理模型

本报告将给出根据我们目前设计的具体结构参数计算的单次斯特林循环输出功,并建立目标函数通过优化相位角等参数最大化单次循环输出功。

传动机构

传动机构方面,我们采用曲柄连杆机构,基本的物理模型图与我们的设计建模图如下:

上述设计的相关参数如下:

【1】连杆比λ:

通过实际加热测试测定,四个过程状态下活塞的位置参数大致如下:

(1)定温压缩

(2)定容吸热

阅读更多

课题:发动机驱动部件的制作(气缸)

一、需求分析

β型斯特林发动机是一种热机,通过气体的循环膨胀和压缩过程来产生功。气缸作为该发动机的核心部件之一,承担了容纳工作气体和推动活塞的重要职责,将工质气体受热膨胀的能量转化为机械功。本文旨在分析β型斯特林发动机气缸的工作原理及相关参数的确定与结构设计以满足一定的性能要求,同时在此过程中提升对气体膨胀做功及整个过程中密封、摩擦、公差设计、基本加工工艺、材料传热性能乃至动力学等的认识。

广义的设计要求

  1. 高热效率: 气缸必须具备高效的热传导和隔热性能,以确保最小的热能损失和高工作效率。
  2. 耐高温性: 由于斯特林发动机工作温度较高,气缸的材料需要能够承受高温环境,同时保持结构稳定。
  3. 公差精度: 在气缸的内径、外径和活塞直径等关键尺寸上需要达到高精度的公差,以确保气缸和活塞的匹配度。
  4. 耐腐蚀性: 考虑到工作气体可能包含腐蚀性物质,气缸的材料应耐腐蚀,以延长使用寿命。
  5. 轻量化: 尽量降低气缸的质量,以减小发动机的整体质量,提高机动性。
  6. 制造工艺: 采用精密的机械加工工艺,以确保气缸内外表面的平滑度和尺寸精度。
  7. 热传导设计: 优化气缸的热传导设计,以提高热能的传递效率。

具体的设计要求

针对最终需要完成的斯特林发动机,需要满足如下几条设计指标与功能要求:

  1. 最大输出功率: 不小于0.5W
  2. 热源:普通酒精灯
  3. 连续运行时间:不小于30分钟
  4. 密封性能: 气缸必须能够有效密封工作气体,具有良好的密封性能以确保高效的热循环过程。
  5. 材料选择: 选择常用的适当材料与零部件以满足高温环境下的性能需求。

满足这些需求将有助于确保β型斯特林发动机的性能优越,同时提高其在各种应用领域的适用性。制作气缸需要综合考虑这些需求,并在制造过程中严格控制相关参数,以获得卓越的产品性能。


二、方案提出

1. 加工方式——机加工

选用机加工方法制作缸筒与活塞的理由如下:

  1. 精确尺寸控制:机加工可以实现非常高的尺寸精确度,确保气缸内径和活塞直径的精确匹配。这是确保气缸与活塞之间的紧密密封以及减少能量损失的关键。精确尺寸控制也有助于降低磨损,延长气缸和活塞的寿命。
  2. 表面质量:机加工可以产生平滑、光洁的表面,减少摩擦和磨损。这对于斯特林发动机的效率至关重要,因为高效的热循环需要最小的摩擦损失。
  3. 公差控制:机加工允许对关键尺寸的公差进行严格控制,确保气缸和活塞的尺寸在允许范围内,从而确保它们可以良好地配合。公差控制还有助于提高气缸和活塞的互换性,降低制造成本。
  4. 材料选择:机加工允许使用各种高强度、耐高温材料,如高温合金或陶瓷,以满足斯特林发动机在高温工作环境下的要求。这有助于提高耐高温性,确保气缸和活塞在极端条件下保持结构稳定。
  5. 加工复杂几何形状:斯特林发动机的气缸和活塞通常具有复杂的几何形状,以实现最佳性能。机加工可以实现这些复杂形状,包括内部凹凸和特殊的密封表面,以确保气缸能够有效地容纳工作气体。

总的来说,机加工满足了精确性、表面质量、公差控制、材料选择和复杂几何形状等多个需求,这些需求都对斯特林发动机的性能和产品质量产生显著影响。通过机加工,可以确保气缸和活塞能够稳定、高效地工作,从而提高发动机的性能和可靠性。

2. 装置主要部件确定

β型斯特林发动机是一种热机,其原理基于气体的周期性膨胀和压缩过程,使发动机能够执行其热循环,将热能转化为机械能。基于实际的需求与制造情况,为方便后期接入整个斯特林发动机,考虑到β型斯特林发动机的基本工作原理,本驱动部件主要由如下四个主要部分构成:

  1. 气缸:气缸是β型斯特林发动机的关键组成部分,用于容纳和引导工作气体,包括热源和冷源。在工作过程中,气体会经历周期性的膨胀和压缩,这需要一个容器来容纳和引导气体。因此,气缸是必不可少的。
  2. 排气活塞:排气活塞是β型斯特林发动机的重要组成部分,它在工作过程中与冷源接触,以帮助气体压缩。排气活塞的运动导致气体的压缩,从而提供负功。它的存在有助于形成热循环,从而使发动机能够持续工作。
  3. 做功活塞:做功活塞是另一个重要的部件,它与热源接触,推动气体膨胀,从而提供正功。做功活塞的运动是热机的关键部分,因为它将热能转化为机械功,实现发动机的工作。
  4. 散热片:散热片在β型斯特林发动机中的必要性主要取决于工作条件和设计要求。由于发动机工作时产生热量,散热片用于冷却气缸和活塞,以确保它们不过热。如果不进行散热,发动机温度将升高,可能导致性能下降、部件损坏或设备故障。因此,散热片在保持发动机温度稳定和可控的情况下是必要的。

这些部件共同协作,构成了发动机的关键部分,使β型斯特林发动机能够将热能转化为机械能,并提供功率输出。

3. 材料选择

基于需求分析与相关指标的要求,综合考虑各材料的导热性能与相关参数,基于这两种材料的特性和性能在斯特林发动机应用中的相对优势,最终选择**不锈钢-304材料用于制作活塞、铝合金-0001材料用于制作气缸**,理由如下:

  1. 不锈钢-304用于活塞制作
    • 高耐磨性和耐腐蚀性:不锈钢-304是一种耐磨性和耐腐蚀性较高的材料,这在活塞的应用中是非常重要的。不锈钢的表面抵抗摩擦和腐蚀,有助于提高活塞的寿命。
    • 高强度:不锈钢-304具有相对较高的强度,这对于承受活塞运动和高压力的应力非常重要。这有助于确保活塞的结构稳定性。
    • 高温稳定性:不锈钢-304在一定温度范围内表现出良好的稳定性,这对于斯特林发动机在高温环境下的应用非常有利。
    • 可加工性:不锈钢-304相对容易加工,使其适合制作复杂几何形状的活塞,以满足特定的设计需求。
  2. 铝合金-0001用于气缸制作
    • 轻质高导热性:铝合金-0001具有较低的密度,因此相对轻便,有助于降低整个发动机的质量。此外,铝合金具有良好的导热性,其导热系数相对于其他材料而言更高,可以有效地传导热量,有利于优化发动机的热传导性能。
    • 耐高温性:虽然铝合金的熔点较低,但在典型的斯特林发动机工作温度范围内,铝合金-0001表现出足够的耐高温性。此外,铝合金在高温下也能保持较好的强度。
    • 可加工性:铝合金易于加工,因此可以比较容易地制造气缸的复杂几何形状,以确保其密封性和热性能。

这样的选择有助于确保活塞和气缸能够在高温、高压和高效率的工作环境下稳定运行,并且提高了产品的寿命和性能。 除此之外,考虑到成本、加工难度与加工时间等客观限制条件因素,这两种材料也易于获取与加工,有效控制了整个制造过程的经济与时间成本。

4. 散热片的型号选择与相关尺寸的确定

散热片的主要作用是从热源(如电子元件、发动机、LED等)吸收热量,并将其有效地散发到周围环境中。使用散热片的主要原因:

  1. 保持温度稳定:散热片有助于保持热源的温度在可接受范围内。过高的温度可能导致设备故障或元件损坏,因此散热片对于稳定运行至关重要。
  2. 延长寿命:有效的散热可以延长设备和元件的寿命。高温环境可能导致元件老化,降低其寿命。通过散热片,可以有效地冷却元件并延长其寿命。
  3. 提高性能:在高温环境下,设备性能通常下降。通过散热片,可以确保设备在更长时间内保持高性能,以满足连续运行时间的需求。
  4. 安全性:一些应用中,如电子设备,高温可能导致火灾或其他安全问题。散热片有助于维持较低的温度,减少了潜在的安全风险。

考虑到制造过程的时间和经济成本有限,计划设计的大致尺寸均较小;同时为了提升散热效率,决定选用现成的特定型号的散热片,并根据散热片的相关尺寸参数确定设计的气缸与活塞的具体尺寸数据。如下图1所示,是本项目中所选用的散热片,其外径为32mm,内径为17mm,厚度为10mm。

图1:散热片型号选择

图1:散热片型号选择

在确定了选用的散热片内径为17mm后,计划制造的气缸外径也随之确定为17mm。为尽可能地提高传热效率,气缸的侧壁厚应尽量小,在此设定为2mm。于是做功活塞的外径也随之确定为17-2=15mm。除此之外,排气活塞的圆柱长杆半径也应与做工活塞的孔洞内径保持一致,设定为5mm;排气活塞的活塞头半径应大于圆柱长杆半径且小于气缸内径,在此设定为12mm。

阅读更多

课题:典型建筑墙体的稳态传热分析

一、背景介绍

建筑墙体作为建筑的重要组成部分,在维护室内舒适温度和能源效率方面起着重要作用,研究其作用及在传热过程中的特性对生态建筑的可持续发展具有重要的指导意义。发展生态节能建筑最终的目标就是要在满足室内居住者的热舒适基础上降低建筑的能耗,对实际居住者而言较关注的是如何以较低的能耗获得舒适的建筑室内热环境。考虑到当前大部分大型公共建筑、工业建筑与高层住宅的主要承重构件包括梁、板、柱等均采用钢筋混凝土结构,因此本文将着重针对此种结构简化模型的传热过程进行分析。

稳态传热是指传热系统中各点的温度仅随位置而变化,不随时间而改变的传热过程,对于这一传热过程的分析有助于评估墙体在不同环境条件下的隔热性能,其中一个关键参数是环境空气流速。本研究旨在分析单位面积上典型建筑墙体的稳态散热过程,特别关注墙体散热量随环境空气流速的变化关系。


二、物理模型

钢筋混凝土墙体结构的物理模型如下图1、2、3所示。

图1:钢筋结构图解

图1:钢筋结构图解

图2:墙体结构物理模型

图2:墙体结构物理模型

图3:墙体处传热物理模型

图3:墙体处传热物理模型

在上述简化模型中,选取房间中心为坐标原点,定义有如下参数:

(1)室内方墙高宽比为Ar=L/H;

(2)模型左端设有厚度为s的墙体;

(3)墙体内侧空气流速为V1,墙体外侧空气流速为V2;

(4)墙体内侧温度为Tf1,墙体外侧温度为Tf2,且由于研究室内散热过程,默认Tf1>Tf2;

(5)钢筋混凝土结构内表面温度为Tw1,钢筋混凝土结构外表面温度为Tw2,且由于研究室内散热过程,默认Tw1>Tw2。

注意:模型中方腔右侧墙体及上、下墙体均为绝热且不考虑厚度。


三、传热过程分析

该简化传热过程主要可以分为以下三个环节:

(1)墙体内侧的对流换热

该过程为热对流过程,由牛顿冷却公式可得:单位面积墙体上的对流传热量Q1=hΔT1

其中,h为表面对流换热系数,通过查询相关文献与手册(《民用建筑热工设计规范》 GB 50176-2016)可得,当Ar=L/H<=0.3时,空气在钢筋混凝土内表面的对流换热系数约为8.7W/m^2-K;当Ar=L/H>0.3时,空气在钢筋混凝土内表面的对流换热系数约为7.6W/m^2-K(如图4所示)。ΔT1为室内空气温度Tf1与钢筋混凝土内表面的温度Tw1之差。

图4:内表面换热系数αi和内表面换热阻Ri

图4:内表面换热系数αi和内表面换热阻Ri

(2)通过墙壁的导热(散热)过程

该过程为热传导过程,由傅里叶定律可得:单位面积墙体上的传导热量Q2=λΔT2/Δx

阅读更多