心电信号采集与处理

1 实验需求分析

1.1 项目背景介绍

心电信号(Electrocardiogram, ECG)是反映心脏活动电生理变化的重要生物电信号,其特征包括心率、节律、波形等参数,能够直观反映心脏健康状况,在临床医学、健康监测和疾病预防中具有不可替代的作用。通过心电信号的测量与分析,可以检测心律失常、心肌缺血、心脏传导阻滞等异常,为心脏疾病的诊断和治疗提供关键支持;借助便携式和可穿戴设备,实时心电监测已成为健康管理的重要手段,为心血管疾病高危人群提供预警,有助于降低发病率和致死率。此外,心电信号还是生物医学研究的重要工具,为心血管药物开发、人工心脏研究等领域提供了基础数据。在当前人口老龄化加剧和心血管疾病高发的背景下,心电信号测量与分析技术显得尤为重要。本项目旨在开发高精度的心电信号采集系统,结合课程中介绍的数字信号处理等专业知识,为心脏健康提供更加便捷和智能的监测方案,推动精准医疗与个性化健康管理的发展。

1.2 心电信号特征与设计需求

心脏内部产生的一系列非常协调的电刺激脉冲,使得心脏肌肉细胞有节奏的舒张和收缩,这些信号传递到人体表面的不同部位形成不同的电位差。通过仪器设备可以从体表检测到这些微弱的电位差信号,称之为心电信号。换言之,心电信号即为人体心脏细胞细胞膜产生的电势差。在医学上,医生往往需要通过心率与幅值等参数来初步判断患者的健康状况,因此实现高精度的心率与幅值测量是本项目中设计的心电信号采集与处理系统的核心功能。

图1.1:心电信号简介

正常的心电信号频率范围为0.05Hz-100Hz,其能量集中在低频段,其中99%的能量集中在0Hz-35Hz。在其采集过程中容易受到各种干扰,主要分为三种:

  • 工频和工频的谐波频率干扰,工频频率在我国为50Hz;

  • 肌颤噪声和采样电路参考电压引入的电源纹波等高频噪声,频率通常在100Hz以上;

  • 呼吸基线漂移和采样引入的直流分量,频率一般分布在0-0.7Hz。

以上的各种干扰会对心电信号采集结果产生较大的影响,使得采集到的心电信号中出现许多杂波与噪声,这是我们所不希望看到的。因此,为提高心电信号的测量精度,需要设计相应的滤波器对传感器采集到的信号进行滤波,从而减小信号中的噪声震荡,提高心率与幅值测量的准确程度。特别的,由于参考电压受环境温度变化会产生一定的温漂,以及人的呼吸活动和电极滑动也导致基线漂移。这些干扰的频率很低,通常在几Hz以内,但和心电信号的有效频谱非常接近,因此需要过渡带较窄的IIR直流陷波器来消除干扰。

基于心电信号的以上特性,对于该心电信号采集与处理系统,提出如下的技术指标需求:

  • 0频处的缓变直流衰减不低于30dB;

  • 降噪滤波器以35Hz为3dB通带截止频率,过渡带不超过10Hz,阻带衰减不低于40dB;

  • 心率估算误差不超过10%。

2 实现方案论证

2.1 系统框架设计

本项目的核心目标是实现心电信号的采集与滤波以及心率测量,同时需要在屏幕上绘制时域波形与频谱图。具体而言,细分的功能如下:

  • 实现ADS1292获取心电信号原始数据,并通过串口传输至PC电脑;

  • 实现PC电脑中通过MATLAB对原始数据进行时域和频域分析;

  • 实现PC电脑中通过MATLAB对原始数据进行降噪和提取心率;

  • 实现STM32单片机中对原始数据进行降噪和提取心率;

  • TFT屏幕中绘制心电信号曲线和显示心率数值。

为实现以上功能,采用如下的系统设计流程:

  1. 调试ADS1292R_PowerOnInit函数中的ADS1292芯片读取,通过读取芯片device_id验证硬件功能正常且连接正确;

  2. 在中断驱动下,读取ADS1292的原始数据,并存储在单片机的存储器中;

  3. 把原始数据传输到PC;

  4. 在PC中分析原始数据的时域和频域;

  5. 在PC中设计滤波器对原始数据进行处理,并提取心率等;

  6. 把PC中的滤波器移植到单片机中;

  7. 在单片机中把心电波形和心率等数据显示到TFT屏幕。

图2.1:系统设计流程

根据如上设计流程,结合目前提供的材料,设计了如下图所示的心电信号采集与分析系统:

图2.2:系统框架

系统的工作流程如下:

  1. 首先,STM32控制器向心电传感器发送采集指令,传感器随后采集来自人体或模拟信号源的心电信号,并将数据反馈至控制器;

  2. 接着,控制器将采集到的数据传输至PC端,供进一步分析处理;

  3. 然后,根据PC端的分析结果,控制器会调整参数并优化心电信号处理;

  4. 最终,处理后的结果将在TFT屏幕上实时显示,供用户查看。

可以看到,该系统主要涉及到STM32主控芯片、ADS1292R传感器、TFT显示屏、心电信号模拟器以及PC端分析软件MATLAB等关键组件。接下来将对于本项目涉及的各硬件组件进行介绍。

2.2 STM32主控芯片

本项目选用的微控制器STM32F407ZG是系统的核心控制单元,负责协调各个模块的工作。其不仅负责信号的采集,还管理信号传输、滤波器应用、以及与TFT屏幕的显示操作。其强大的处理能力和灵活的控制方式使其成为整个系统的”大脑”。该控制器目前搭载在”正点原子”探索者STM32F407开发板V3上,负责完成系统的信号采集、处理与传输任务。

图2.3:STM32F407探索者开发板V3实物图正面

该单片机具备高性能的ARM Cortex-M4内核,主频高达168MHz,同时集成了丰富的外设接口,包括多个ADC通道、DMA(直接存储器访问)、定时器以及USART串口等,为心电信号的实时采集、处理与传输提供了强有力的硬件支持。它通过SPI协议与ADS1292传感器进行数据交换,采集来自人体或模拟信号源的心电信号,并进行初步处理。

2.3 心电信号模拟器

在实验的过程中,无法总是以人体作为心电信号源,因此在缺乏人体数据的情况下,本项目采用SKX-2000心电信号模拟仪作为测试时的模拟信号源。它能够生成不同类型的心电波形,广泛用于测试系统性能和验证心电信号采集、处理的稳定性。此设备对确保系统在实际使用前达到预期的性能标准至关重要。

阅读更多

基于直流电源调控的自动调光控制设计

摘要

本项目围绕直流电源调控的自动调光控制系统展开研究与设计,系统性地探讨了Buck变换器的基本原理、建模方法、性能分析及其实验验证过程。在硬件设计方面,基于STM32处理器,选择了高性能的元器件并通过合理的电路拓扑实现高效的能量转换;在软件控制算法方面,采用PID闭环控制,并结合自动控制原理中的经典控制理论,利用PSIM与MWorks等仿真与科学计算工具,对控制系统的时域响应、频域特性和稳定性进行了详尽分析,进而通过参数优化与校正环节设计显著提升了系统的响应速度和稳态性能,同时也验证了闭环控制系统在动态性能、抗干扰能力和输出精度方面的显著优势。此外,通过实验测量与仿真结果对比,探讨了电路寄生参数对系统性能的影响,为后续优化提供了理论依据。在基于光敏电阻的自动调光功能模块中,结合蓝牙通信接口实现了系统的智能化控制,同时对于自动调光系统进行外观设计,赋予产品更多的人文关怀与实用价值;在光伏板最大功率点跟踪(MPPT)功能模块中,根据MPPT的原理与基本思想设计了相应的控制算法,并在实验中成功控制光伏板输出功率,使其约等于负载消耗功率,完成了不同光照强度下最大功率点的跟踪。最后,对于该自动控制系统的设计成果及其在实际应用中的可行性与局限性进行总结,并对未来可能的优化方向和工程实现前景提出了展望。

关键词:Buck变换器;PID闭环控制;自动调光;光伏MPPT

1 课程涉及理论基础和STM32简介

1.1 自动控制原理简介

在科学技术飞速发展的今天,自动控制技术和理论已经成为现代社会不可缺少的组成部分。自动控制技术的应用不仅使生产过程实现自动化,从而提高了劳动生产率和产品质量,降低了生产成本,提高了经济效益,改善了劳动条件,使人们从繁重的体力劳动和单调重复的脑力劳动中解放出来;而且在人类征服大自然、探索新能源、发展空间技术和创造人类社会文明等方面都具有十分重要的意义。

自动控制理论是研究关于自动控制系统组成、分析和综合的一般性理论,是研究自动控制共同规律的技术科学。自动控制是在人不直接参与的情况下,利用外加的自动控制设备或装置(控制装置或控制器),使机器、设备或生产过程(统称为被控对象)的某个工作状态或参数(被控量)自动地按照预定的规律运行,使机器的动作、设备的运转、生产过程的状态能够自动地在一定的精度范围内按照给定的规律变化。学习和研究自动控制理论是为了探索自动控制系统中变量的运动规律和改变这种运动规律的可能性和途径,为建立高性能的自动控制系统提供必要的理论依据。

1.2 本项目所涉及的经典控制理论内容

图1.1:项目涉及的经典控制理论框图

本项目从经典控制理论的基本原理与概念出发,以Buck变换器这一单输入-单输出的线性系统作为研究对象,利用微分方程、Laplace变换与传递函数等数学工具建立系统的数学模型,并基于时域分析、频域分析以及根轨迹法等多种分析方法对于系统的稳定性与响应特性进行详细分析,从而针对特定的性能指标进行对应的校正设计,通过引入PID控制器并调控其参数以改变系统的频率特性从而满足给定的各项性能指标,使得整个闭环控制系统能够兼具稳定性、快速性与准确性。

1.3 STM32处理器介绍

控制核心是控制系统中的重要组成部分,用于计算、解析各种数据,并执行相应的控制算法。芯片选型的设计直接决定了控制板的性能和功能。STM32是由意法半导体公司(ST)推出的基于Arm Cortex-M处理器内核的32位微控制器,专为要求高性能、低成本、低功耗的嵌入式应用设计,集实时功能、数字信号处理、低功耗/低电压操作、连接性等特性于一身,同时还保持了集成度高和易于开发的特点,基于行业标准内核,提供了大量工具和软件选项以支持工程开发,非常适用于小型项目或端到端平台。

本项目选用的处理器STM32F103C8T6作为中等容量高性能系列MCU,集成了工作频率为72MHz的高性能Arm Cortex-M3 32位RISC内核、高速嵌入式存储器(高达128KB的Flash存储器和20KB的SRAM存储器),以及大量连接至2条APB总线的增强型I/O与外设,具有36引脚至100引脚等6种不同的封装类型。所有器件均提供2个12位ADC、3个16位通用定时器、2个PWM定时器以及标准和高级通信接口:多达2个I2C和SPI、3个USART、1个USB和1个CAN。器件的工作电压为2.0V至3.6V。该处理器的工作温度范围为-40℃到+85℃,可扩展至-40℃到+105摄氏度。这些特性使得该处理器成为各种应用的理想之选,也能很好满足本项目对于控制器的性能需求。

图1.2:本项目选用的处理器STM32F103C8T6

1.4 本章小结

本章主要介绍了本课程相关的自动控制理论基础,针对本项目涉及到的经典控制理论框架进行了简要概述,同时对于本项目所选用的控制核心——STM32处理器进行简单介绍,重点分析了我们采用的STM32F103C8T6处理器的性能特性并给出选型原因。这为本课程项目提供了整体框架,并从理论上对后续项目的具体实施给出了方向性的指引。

2 直流Buck变换器设计与调试

2.1 Buck变换器拓扑原理分析

Buck(降压式)变换器是一种输出电压≤输入电压的非隔离直流DC-DC变换器,其中输入电流为脉冲式的,而输出电流为连续的低纹波直流电压。Buck变换器实现的稳态输入输出关系为:
$$
U_{0} = DU_{in}
$$
Buck变换器的主电路由开关管Q,二极管D,输出滤波电感L和输出滤波电容C构成。

图2.1:Buck开关功率变换器基本电路

可以看到,在能量缓冲变换电路中,主要由如下三个部分组成:

  1. 电感L与电容C实质上构成了一个二阶低通滤波器,通过滤除开关频率交流分量而仅保留其直流分量,得到平直的输出电压U0;

  2. 脉冲宽度调制(Pulse Width Modulation,PWM)产生方波电压控制开关管Q的导通;

  3. 二极管D为电感电流提供续流回路。

Buck变换器主电路整体的工作逻辑如下:

  1. 当开关管Q驱动为高电平时,开关管导通,储能电感L被充磁,流经电感的电流线性增加,同时给电容C充电,给负载R提供能量;

图2.2:开关管导通时电流环路

  1. 当开关管Q驱动为低电平时,开关管关断,储能电感L通过续流二极管D放电,电感电流线性减少,输出电压靠输出滤波电容C放电以及减小的电感电流维持。

图2.3:开关管关断时电流环路

事实上,对于该电能变换器,可以通过更改个别元器件的种类、接入方式与顺序,实现搭建具有不同功能的电能变换电路,即Buck变换器的拓扑原理。下面列举几种常见的拓扑电路:

  1. 升压变换器:
阅读更多

基于STM32F407实现的信号发生与采集分析系统

演示视频已上传至Bilibili视频平台:https://www.bilibili.com/video/BV1wUiRYxE8z


一、系统功能与整体架构设计

系统实现功能

(1)单片机在按键控制下,产生1kHz的正弦波或方波;

(2)单片机能够采集波形,并且显示;

(3)单片机能够分析采集波形的频谱,并且显示频谱与基波频率。

整体架构设计图

系统主页与按键对应功能简介

每次启动系统都会默认直接进入该主页面:

(1)蓝色部分的文字为系统名称与作者姓名,这会在后续的每个功能页面中都有显示;

(2)黑色部分的文字为各按键对应的功能介绍。

正如主页的功能介绍栏所示:

(1)按下KEY0:PA4引脚开始持续输出1kHz的正弦波信号,并在屏幕上实时显示从PA5引脚采集到的输入信号波形;

(2)按下KEY1:PA4引脚开始持续输出1kHz的方波信号,并在屏幕上实时显示从PA5引脚采集到的输入信号波形;

(3)按下KEY2:在屏幕上实时显示从PA5引脚采集到的输入信号的频谱分析结果(幅值谱,频率范围为0~1000Hz);

(3)按下KEY3(KEY_UP):在屏幕上实时显示从PA5引脚采集到的输入信号的频谱分析结果(幅值谱,频率范围为0~8000Hz)。


二、各部分功能实现

1、1kHz正弦波与方波的产生

模块功能架构设计

在实际单片机编程实现时,导入并调用DSP库加速信号数组(正弦波)的计算,并通过时钟TIM6(分频)控制DMA的数据搬运过程,并设置DAC数模转换将搬运后的信号数字数据在PA4引脚以模拟信号形式输出。

模块功能实现依据

为使用单片机产生指定频率的波形,需要根据上述架构设置对应的参数,基本的设置逻辑如下:

(1)首先,这里使用定时器TIM6来控制DMA搬移数据的过程,在CubeMX中已预先设置其时钟频率为84MHz;

(2)在生成信号数组时,C语言程序中设定数组长度为1024(与后续采集一致,为4的整数次幂以便于进行快速傅里叶变换FFT);

阅读更多

小车路径规划

本项目全部代码已同步上传至Github,仓库链接:Asgard-Tim/Path-Planning: 重庆大学明月科创实验班定量工程设计方法课程项目 (github.com)

一、设计要求


在本部分的课程项目中,要求我们运用LD14雷达扫描地图,在MATLAB中进行人工势场添加并对STM32小车进行路径规划,在一规定的场地中让小车避开两个矩形障碍物并以尽可能短的路径最终抵达圆形目标位置。


二、系统方案


2.1 移动底盘分析

小车为履带式小车,左右履带分别由一枚直流电机进行驱动,运动模式类似常规双轮小车,通过左右两枚电机转动的差速实现转向。该小车相对来说较为容易进行控制,只需要控制两个驱动轮的速度存在差异,即两轮差速,即可控制机器人实现无滑动摩擦的旋转,也可实现零半径转弯。

图2-1 双轮履带小车外观图

1

图2-2 两轮差速式机器人运动学分析图

2

对小车移动底盘的运动学分析(如上图2-2所示):

小车的速度控制主要是控制 X 轴(前后方向)和 Z 轴(旋转方向)的速度, 以 Vx 和 Vz 来指代,单位分别是 m/s 和弧度/s。X 轴方向以前进记为正,Z 轴方向以右转记为正。车轮速度是使用编码器来计算和得出,读取编码器计数后再转化成车轮的速度。Vz则是通过左右电机转动的差速计算得到的。

图中参数分别代表:

3

2.2 电机特性分析

在本次项目中,我们采用带有减速器与编码器的直流电机驱动小车前进。

直流电机的物理模型图如下图2-3所示。其中,固定部分有磁铁,这里称作主磁极;固定部分还有电刷。转动部分有环形铁心和绕在环形铁心上的绕组。 (其中 2 个小圆圈是为了方便表示该位置上的导体电势或电流的方向而设置的) 它的固定部分(定子)上,装设了一对直流励磁的静止的主磁极 N 和S,在旋转部分(转子)上装设电枢铁心。在电枢铁心上放置了两根导体连成的电枢线圈, 线圈的首端和末端分别连到两个圆弧形的铜片上,此铜片称为换向片。换向片之间 互相绝缘,由换向片构成的整体称为换向器。换向器固定在转轴上,换向片与转轴 之间亦互相绝缘。在换向片上放置着一对固定不动的电刷 B1 和 B2,当电枢旋转时,电枢线圈通过换向片和电刷与外电路接通。在电刷上施加直流电压 U,电枢线圈中的电流流向为:N 极下的有效边中的电流总是一个方向,而 S 极下的有效边中的电流总是另一个方向。这样两个有效边所受的洛伦兹力的方向一致(可以根据左手法则判定),电枢开始转动。具体来说就是,把上图中的+和-分别接到电池的正极和负极,电机即可转动;如果是把上图中的+和-分别接到电池的负极和正极,则电机会反方向转动。电机的转速可以理解为和外接的电压是正相关的(实际是由电枢电流决定)。

总而言之,如果我们可以调节施加在电机上面的直流电压大小,即可实现直流 电机调速,改变施加电机上面直流电压的极性,即可实现电机换向。

图2-3 直流电机的物理模型

4

在具体的使用过程中,我们需要通过在特定的引脚之间(如本次项目所用电机为1/6引脚)接上一个直流电源,电机即可转动,且改变电压大小即可改变电机转速。接线方式说明如下图2-4所示。

5

2.3 电机控制策略以及PID特性分析

小车电机驱动器芯片使用 AT8236,具有过流保护功能,并可设置电流阈值。驱动芯片只需两个逻辑输入,便可达到调速和正反转的功能,本小车中,每个电机使用两路PWM进行调速(实际上一个普通 IO 和一路 PWM 即可进行正反转 和调速)。

电机的速度使用 13 线霍尔编码器输出 AB 相进行测量,电机减速比为 1:30,使用 STM32 的编码器测量功能,并初始化为脉冲上升沿和下降沿都进行计数,可实现轮子转一圈输出 1560 个计数。

电机调速框图如下图2-5所示。

阅读更多

寻迹小车

一、绪论


1.1 实验背景
1.1.1 问题的情景

长期以来,由于我国是人口大国而且工业基础薄弱,因此早期在我国机器人的发展受到一定的限制。然而随着制造业工人的人力成本的不断上升与社会自动化程度的不断提高,我国也开始着重于发展机器人,并且也取得了较大的进步。在 1995 年,我国沈阳自动化所开始研制HT—100A点焊机器人,是我国较早的机器人了,如图1所示;此后,沈阳新松公司研发出了6 kg弧焊机器人,此机器人不仅实用,而且轻便,如图 2 所示;之后,哈尔滨工业大学机器 人研究所也研发出了便携式机器人,此机器人具有 6 自由度,增强了焊接能力,成为在恶劣环境中实现焊接功能的重要设备。总之,在国家“863 计划”与“十一五”计划的指导下,我国机器人的设计取得了飞速发 展,甚至在机器人的某些关键部件的设计已经接近于世界先进水平,并在世界工业机器人领域已经占有一席之地了。

1

2

1.1.2 实验的目的

目前,机器人的发展趋势非常的迅猛,机器人可以替代人类去从事高危险的工作,减轻了人类的劳动强度。本文通过对机器人的发展史进行简要的介绍,阐明了我国发展机器人的必要性。同时,对于我国的发展而言,我国正处于工业化进程的关键时期,将来的高强度、高危险行业的工人数量将会急剧的下降,机器人将会迎来新的“春天”,所以机器人的发展仍拥有巨大的发展空间。同时,由于我国各机器人的厂商对于机器人的研发能力与金钱投资的不同,在我国的机器人市场上的竞争也会愈演愈烈,最终也将形成我国的机器人研发市场。总之,在未来的几十年里,相信重点发展机器人将会成为社会的发展趋势,不久机器人将会引领未来,加入到我国现代化建设的行列中。小车,也就是轮式机器人,作为以学科交叉、产品创新为特色的明月班同学,切入这个产业不失为优秀的选择,故而选取小车为切入点了解相关知识。

1.2 实验内容
1.2.1 使用51单片机控制及其元器件

STC89C52控制板芯片、1.5V干电池x4、L298N电机驱动板x1、红外循迹模块、直流电机x2以及搭建材料若干;

3

1.2.2使用FPGA开发板控制及其元器件

Cyclonell EP2C5T144控制板芯片1.5V干电池x4、L298N电机驱动板x1、红外循迹模块、直流电机x2以及搭建材料若干;

4


二、实现过程


2.1 总体工作原理简释
2.1.2 红外循迹模块

第一步,位于小车前端的红外模块会释放红外线探测下方是否为黑色区域,并将相应的高低电平信号传递至控制模块(51单片机/FPGA开发板)处理,控制模块随后将发送信息至L298N电机驱动的控制模块,并由此控制左右两轮的转动速度以及转动方向,从而实现对黑线的反应和循迹。

作为电机的驱动模块,该模块对控制小车移动有着重要且直接的作用。

5

利用红外发射器向地面发射红外线,并用传感器接收由地面反射的红外线。当红外接收模块下方为黑色轨迹时,红外线被黑色轨迹吸收,传感器没有接收到红外线,红外循迹模块输出低电平到单片机。反之,传感器接收到红外线,红外循迹模块输出高电平到单片机。可通过红外循迹模块输出的信号来判断小车是否偏离轨迹。可调电阻可以调节传感器的灵敏度,易于调试。使用红外循迹模块方案也易于实现,红外循迹方案相比于摄像循迹成本更加便宜,软件设计更加简单,设计制作周期短,具备一定可靠性。

对于左电机,共有输入ENA、IN1、IN2,输出OUT1(黑线)、OUT2(红线)、其信号与运动对应如下:(0,X,X)停止、(1,0,0)停止、(1,1,0)正传、(1,0,1)反转、(1,1,1)停止;

对于右电机,共有输入ENB、IN3、IN4,输出OUT3(黑线)、OUT4(红线),其信号与运动对应如下:(0,X,X)停止、(1,0,0)停止、(1,1,0)反传、(1,0,1)正转、(1,1,1)停止。

2.1.3 L298N电机驱动模块

6

阅读更多