摘要
本项目围绕直流电源调控的自动调光控制系统展开研究与设计,系统性地探讨了Buck变换器的基本原理、建模方法、性能分析及其实验验证过程。在硬件设计方面,基于STM32处理器,选择了高性能的元器件并通过合理的电路拓扑实现高效的能量转换;在软件控制算法方面,采用PID闭环控制,并结合自动控制原理中的经典控制理论,利用PSIM与MWorks等仿真与科学计算工具,对控制系统的时域响应、频域特性和稳定性进行了详尽分析,进而通过参数优化与校正环节设计显著提升了系统的响应速度和稳态性能,同时也验证了闭环控制系统在动态性能、抗干扰能力和输出精度方面的显著优势。此外,通过实验测量与仿真结果对比,探讨了电路寄生参数对系统性能的影响,为后续优化提供了理论依据。在基于光敏电阻的自动调光功能模块中,结合蓝牙通信接口实现了系统的智能化控制,同时对于自动调光系统进行外观设计,赋予产品更多的人文关怀与实用价值;在光伏板最大功率点跟踪(MPPT)功能模块中,根据MPPT的原理与基本思想设计了相应的控制算法,并在实验中成功控制光伏板输出功率,使其约等于负载消耗功率,完成了不同光照强度下最大功率点的跟踪。最后,对于该自动控制系统的设计成果及其在实际应用中的可行性与局限性进行总结,并对未来可能的优化方向和工程实现前景提出了展望。
关键词:Buck变换器;PID闭环控制;自动调光;光伏MPPT
1 课程涉及理论基础和STM32简介
1.1 自动控制原理简介
在科学技术飞速发展的今天,自动控制技术和理论已经成为现代社会不可缺少的组成部分。自动控制技术的应用不仅使生产过程实现自动化,从而提高了劳动生产率和产品质量,降低了生产成本,提高了经济效益,改善了劳动条件,使人们从繁重的体力劳动和单调重复的脑力劳动中解放出来;而且在人类征服大自然、探索新能源、发展空间技术和创造人类社会文明等方面都具有十分重要的意义。
自动控制理论是研究关于自动控制系统组成、分析和综合的一般性理论,是研究自动控制共同规律的技术科学。自动控制是在人不直接参与的情况下,利用外加的自动控制设备或装置(控制装置或控制器),使机器、设备或生产过程(统称为被控对象)的某个工作状态或参数(被控量)自动地按照预定的规律运行,使机器的动作、设备的运转、生产过程的状态能够自动地在一定的精度范围内按照给定的规律变化。学习和研究自动控制理论是为了探索自动控制系统中变量的运动规律和改变这种运动规律的可能性和途径,为建立高性能的自动控制系统提供必要的理论依据。
1.2 本项目所涉及的经典控制理论内容
本项目从经典控制理论的基本原理与概念出发,以Buck变换器这一单输入-单输出的线性系统作为研究对象,利用微分方程、Laplace变换与传递函数等数学工具建立系统的数学模型,并基于时域分析、频域分析以及根轨迹法等多种分析方法对于系统的稳定性与响应特性进行详细分析,从而针对特定的性能指标进行对应的校正设计,通过引入PID控制器并调控其参数以改变系统的频率特性从而满足给定的各项性能指标,使得整个闭环控制系统能够兼具稳定性、快速性与准确性。
1.3 STM32处理器介绍
控制核心是控制系统中的重要组成部分,用于计算、解析各种数据,并执行相应的控制算法。芯片选型的设计直接决定了控制板的性能和功能。STM32是由意法半导体公司(ST)推出的基于Arm Cortex-M处理器内核的32位微控制器,专为要求高性能、低成本、低功耗的嵌入式应用设计,集实时功能、数字信号处理、低功耗/低电压操作、连接性等特性于一身,同时还保持了集成度高和易于开发的特点,基于行业标准内核,提供了大量工具和软件选项以支持工程开发,非常适用于小型项目或端到端平台。
本项目选用的处理器STM32F103C8T6作为中等容量高性能系列MCU,集成了工作频率为72MHz的高性能Arm Cortex-M3 32位RISC内核、高速嵌入式存储器(高达128KB的Flash存储器和20KB的SRAM存储器),以及大量连接至2条APB总线的增强型I/O与外设,具有36引脚至100引脚等6种不同的封装类型。所有器件均提供2个12位ADC、3个16位通用定时器、2个PWM定时器以及标准和高级通信接口:多达2个I2C和SPI、3个USART、1个USB和1个CAN。器件的工作电压为2.0V至3.6V。该处理器的工作温度范围为-40℃到+85℃,可扩展至-40℃到+105摄氏度。这些特性使得该处理器成为各种应用的理想之选,也能很好满足本项目对于控制器的性能需求。
1.4 本章小结
本章主要介绍了本课程相关的自动控制理论基础,针对本项目涉及到的经典控制理论框架进行了简要概述,同时对于本项目所选用的控制核心——STM32处理器进行简单介绍,重点分析了我们采用的STM32F103C8T6处理器的性能特性并给出选型原因。这为本课程项目提供了整体框架,并从理论上对后续项目的具体实施给出了方向性的指引。
2 直流Buck变换器设计与调试
2.1 Buck变换器拓扑原理分析
Buck(降压式)变换器是一种输出电压≤输入电压的非隔离直流DC-DC变换器,其中输入电流为脉冲式的,而输出电流为连续的低纹波直流电压。Buck变换器实现的稳态输入输出关系为:
$$
U_{0} = DU_{in}
$$
Buck变换器的主电路由开关管Q,二极管D,输出滤波电感L和输出滤波电容C构成。
可以看到,在能量缓冲变换电路中,主要由如下三个部分组成:
电感L与电容C实质上构成了一个二阶低通滤波器,通过滤除开关频率交流分量而仅保留其直流分量,得到平直的输出电压U0;
脉冲宽度调制(Pulse Width Modulation,PWM)产生方波电压控制开关管Q的导通;
二极管D为电感电流提供续流回路。
Buck变换器主电路整体的工作逻辑如下:
- 当开关管Q驱动为高电平时,开关管导通,储能电感L被充磁,流经电感的电流线性增加,同时给电容C充电,给负载R提供能量;
- 当开关管Q驱动为低电平时,开关管关断,储能电感L通过续流二极管D放电,电感电流线性减少,输出电压靠输出滤波电容C放电以及减小的电感电流维持。
事实上,对于该电能变换器,可以通过更改个别元器件的种类、接入方式与顺序,实现搭建具有不同功能的电能变换电路,即Buck变换器的拓扑原理。下面列举几种常见的拓扑电路:
- 升压变换器: