求矩阵特征值与特征向量:乘幂法及其改进算法

研究背景意义

矩阵的特征值计算虽然有比较可靠的理论方法,但是,理论方法只适合于矩阵规模很小或者只是在理论证明中起作用,而实际问题的数据规模都比较大,不太可能采用常规的理论解法。计算机擅长处理大量的数值计算,所以通过适当的数值计算理论,写成程序,让计算机处理,是一种处理大规模矩阵的方法,而且是一种好的方法。乘幂法(又称幂法)是求矩阵按模最大特征值的常用方法,其结构简单、便于使用,在实际工程中应用广泛:

  • 在数值分析和优化问题中,乘幂法可通过求解矩阵按模最大特征值来得到其谱半径,从而帮助分析迭代算法的收敛性;
  • 在物理学和工程学中,特征值问题常用于分析系统的稳定性、振动频率和模态分析,乘幂法能够有效求解系统的最大特征值,从而帮助理解系统的动态行为;
  • 在图像处理中,特征值分解用于图像压缩、特征提取和模式识别,乘幂法可用于求解图像矩阵的最大特征值,从而实现高效的图像处理算法;
  • ……

但该方法也存在一定的局限性,其只适用于求矩阵按模最大的特征值,而在实际问题中往往需要求矩阵全部特征值,如在主成分分析中需要求相关矩阵的全部特征值以确定各主成分的贡献率,在求解线性微分方程组中通过求系数矩阵的全部特征值以确定其基础解系;同时该方法在求特定矩阵(如具有一对互为相反数的按模最大特征值的矩阵等)的按模最大特征值时是不收敛的。因此,我们希望以乘幂法基本思想为出发点,在此基础上提出一些改进算法以对其进行泛化,使其能够解决更为广泛且通用的应用场景下的实际问题。

算法基本思想

设n阶矩阵A具有n个线性无关的特征向量
$$
x_1,x_2,…,x_n
$$
相应的特征值
$$
\lambda_1,\lambda_2,…,\lambda_n
$$
满足:
$$
\left|\lambda_1\right|>\left|\lambda_2\right|\geq\left|\lambda_3\right|\geq…\geq\left|\lambda_n\right|
$$
现任取一非零向量u_0,作迭代
$$
u_k=Au_{k-1}, k=0,1,2,…
$$
得到向量序列{u_k}(k=0,1,2,…)。因各特征向量线性无关,故n维向量u_0必可由他们线性表示,即:
$$
u_0=\alpha_{1}x_{1}+\alpha_{n}x_{2}+…+\alpha_{n}x_{n}
$$
显然有:
$$
\begin{aligned}u_{k}&=A^{k}v_{0}=\alpha_{1}A^{k}x_{1}+\alpha_{2}A^{k}x_{2}+\cdots+\alpha_{n}A^{k}x_{n}=\alpha_{1}\lambda_{1}^{k}x_{1}+\alpha_{2}\lambda_{2}^{k}x_{2}+\cdots+\alpha_{n}\lambda_{n}^{k}x_{n}\&=\lambda_{1}^{k}\left[\alpha_{1}x_{1}+\alpha_{2}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k}x_{2}+\cdots+\alpha_{n}\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k}x_{n}\right]\end{aligned}
$$

$$
\alpha_{1} \neq 0
$$

$$
\left|\frac{\lambda_{i}}{\lambda_{1}}\right|<1,i=2,3,\cdots,n
$$
可得:
$$
\operatorname*{lim}{k\to\infty}\frac{u{k}}{\lambda_{1}^{k}}=\operatorname*{lim}{k\to\infty}\frac{\lambda{1}^{k}\left[\alpha_{1}x_{1}+\sum_{i=2}^{n}\alpha_{i}\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k}x_{i}\right]}{\lambda_{1}^{k}}=\operatorname*{lim}{k\to\infty}\left[\alpha{1}x_{1}+\sum_{i=2}^{n}\alpha_{i}\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k}x_{i}\right]=\alpha_{1}x_{1}
$$

$$
\operatorname*{lim}{k\to\infty}\frac{\left(u{k+1}\right){m}}{\left(u{k}\right){m}}=\operatorname*{lim}{k\to\infty}\frac{\left{\lambda_{1}^{k+1}\left[\alpha_{1}x_{1}+\sum_{i=2}^{n}\alpha_{i}\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k+1}x_{i}\right]\right}{m}}{\left{\lambda{1}^{k}\left[\alpha_{1}x_{1}+\sum_{i=2}^{n}\alpha_{i}\left(\frac{\lambda_{i}}{\lambda_{i}}\right)^{k}x_{i}\right]\right}{m}}=\lambda{1}\frac{\left(x_{1}\right){m}}{\left(x{1}\right){m}}=\lambda{1}
$$

这表明向量序列u_k具有收敛性,其收敛速度由比值
$$
\left|\frac{\lambda_{2}}{\lambda_{1}}\right|
$$
确定,该比值越小说明收敛速度越快,比值越接近于1收敛速度就越慢。

同时,该结论表明,当k取得足够大时(在实际应用时往往认为某次迭代前后误差小于设定的误差限即满足该条件),有:
$$
u_{k}≈\lambda_{1}^{k}\alpha_{1}x_{1}, \lambda_{1}≈\frac{\left(u_{k+1}\right)}{\left(u_{k}\right)}
$$
即u_ k可近似看作特征值λ_ 1对应的特征向量(较原特征向量x_ 1而言仅乘上了有限的常数系数,其结果仍为该特征值对应的特征向量),而对应的按模最大特征值λ_ 1的估计值可由前后两次迭代的特征向量u_ k相除得到。

当矩阵的按模最大特征值是重根时,上述结论仍然成立。设λ_ 1为r重根,即:
$$
\lambda_{1}=\lambda_{2}=\cdots=\lambda_{r}
$$
且满足条件
$$
\mid\lambda_{r}\mid>\mid\lambda_{r+1}\mid\geq\cdots\geq\mid\lambda_{n}\mid
$$
则有:
$$
u_{k}=A^{k}u_{0}=\lambda_{1}^{k}\left[\sum_{i=1}^{r}\alpha_{i}x_{i}+\sum_{j=r+1}^{n}\alpha_{j}\left(\frac{\lambda_{j}}{\lambda_{1}}\right)^{k}x_{j}\right]
$$
易推得(式中(u_ k)_ m表示向量u_ k的第m个分量):
$$
\lim_{k\to\infty}\frac{u_{k}}{\lambda_{i}^{k}}=\sum_{i=1}^{^{r}}\alpha_{i}x_{i},\lim_{k\to\infty}\frac{\left(u_{k+1}\right){m}}{\left(u{k}\right){m}}=\lambda{1}
$$
与一般情况略有不同的是,此时
$$
u_{k}≈\lambda_{i}^{k}\sum_{i=1}^{^{r}}\alpha_{i}x_{i}
$$
但事实上我们并没有办法在求解之前事先预知一个矩阵是否具有r重按模最大特征值,因此在实际操作的过程中采用与一般情形相同的处理方式(即认为r=1),所得的向量序列u_k仍然收敛,不影响求解结果。

基于以上的算法原理,可以编写如下MATLAB程序,实现一般情况下矩阵按模最大特征值及其对应特征向量的计算:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
function calculatePowerMethod(matrixEdit, iterEdit)
% 获取用户输入的矩阵matrixEdit和最大迭代次数iterEdit
A = str2num(matrixEdit.Value); % 将字符串转换为矩阵
n = length(A);
V = rand(n,1); % 以随机方式初始化迭代向量u0
max_iter = iterEdit.Value; % 获取迭代次数

Eps = 1E-4; % 迭代精度
k = 0; % 初始迭代次数
lambda0 = 0;

% 乘幂法迭代,求得矩阵按模最大特征值lambda及其对应特征向量v
while k <= max_iter - 1
v = A * V;
[vmax, i] = max(abs(v));
lambda = v(i) / V(i);
V = v;
if abs(lambda - lambda0)<Eps
k = k + 1;
break;
end
lambda0 = lambda;
k = k + 1;
end
end

改进的乘幂法

在实际应用层面,上述的算法逻辑只在一小部分的常规矩阵上对于矩阵的按模最大特征值求解有较好效果。事实上,仅依托以上的代码逻辑进行求解往往会出现以下几大问题:

  1. 当矩阵A不具有n个线性无关的特征向量时(事先无法判断),乘幂法不适用。
  2. 当待求取的按模最大特征值abs(λ_ 1)>1时,迭代向量u_ k的各个分量可能会随着abs(λ_ 1)^k变得很大而使计算机“上溢”;而当待求取的按模最大特征值abs(λ_ 1)<1时,迭代向量u_ k的各个分量可能会随着abs(λ_ 1)^k变得很小使u_k成为零向量。
  3. 矩阵的按模最大特征值是一对相反数。
  4. 矩阵的按模最大特征值是一对共轭复数。

(上述算法中还给出了α_1≠0的假设,事实上如果不满足这一点也不影响乘幂法的成功使用。因为舍入误差的影响,在迭代某一步会产生u_k在x_1方向上的分量不为零,以后的迭代仍会收敛)

针对问题1,我们暂时无法提出具有针对性的解决方案,但后续的实际测试证明,当迭代次数k足够大时,我们针对问题3所提出的改进方案在该种情况下相比基本算法能够有更好的收敛性(收敛更快);针对问题2,我们可以通过将向量序列u_k进行规范化处理,限制向量的模在特定小范围内,防止计算机运算的上下溢出;针对问题3,我们在原有的乘幂法算法思想的基础上进行了改进,改进后的算法能够有效对原算法无法求解(不收敛)的按模最大特征值互为相反数的矩阵的按模最大特征值进行有效求解;针对问题4,我们目前还没有找到有效的解决方案。

迭代向量的归一化

设迭代向量u为非零向量,将其归一化得到向量
$$
y=\frac{u}{max(u)}
$$
其中max(u)表示向量u的模最大的分量(即向量的无穷范数)。这样的规范化会保证每一次迭代后得到的新的迭代向量的模最大分量均为1,这有效起到了限制迭代向量分量范围的作用,能够很好地解决上述提到的问题2。值得注意的是,对向量规范化的方式并不只有归一化这一种,实际上可以使用任意一种范数对向量进行规范化处理,如2范数等。可以证明,对于基于不同范数的归一化都有相同的向量序列收敛结论,下面以无穷范数为例给出基本的证明。(显然这样的规范化只是在原有的向量基础上除以了某一个常数,这并不会改变向量序列的收敛性)

取初始向量
$$
u_{0}\neq0
$$
规范化得
$$
y_{0}=\frac{u_{0}}{\max(u_{0})}
$$
构造向量序列:
$$
\begin{aligned}
&u_{1}=Ay_{0}=\frac{Au_{0}}{\max(u_{0})},
&y_{1}=\frac{u_{1}}{\max(u_{1})}=\frac{Au_{0}}{\max(Au_{0})}\
&u_{2}=Ay_{1}=\frac{A^{2}u_{0}}{\max(Au_{0})},
&y_{2}=\frac{u_{2}}{\max(u_{2})}=\frac{A^{2}u_{0}}{\max(A^{2}u_{0})}\
&……\
&u_{k}=Ay{{k-1}}=\frac{A^{k}u{0}}{\max(A^{k-1}u_{0})},
&\quad y_{k}=\frac{u_{k}}{\max(u_{k})}=\frac{A^{k}u_{0}}{\max(A^{k}u_{0})}
\end{aligned}
$$
结合乘幂法基本算法中已经证明的结论
$$
A^{k}u_{0}=u_{k}≈\lambda_{1}^{k}\alpha_{1}x_{1}
$$
则有:
$$
\lim_{k\to\infty}y_{k}=\frac{x_{1}}{\max(x_{1})},
\lim_{k\to\infty}\max(u_{k})=\lambda_{1}
$$
这表明此时y_ k可近似看作特征值λ_ 1对应的特征向量(较原特征向量x_ 1而言仅进行了归一化处理,其结果仍为该特征值对应的特征向量),而对应的按模最大特征值λ_ 1的估计值可近似看作未归一化前的迭代向量最大分量值max(u_k)。

基于以上的算法原理,可以编写如下MATLAB程序,实现归一化处理下矩阵按模最大特征值及其对应特征向量的计算:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
function calculatePowerMethod(matrixEdit, iterEdit)
% 获取用户输入的矩阵matrixEdit和最大迭代次数iterEdit
A = str2num(matrixEdit.Value); % 将字符串转换为矩阵
n = length(A);
V = rand(n,1); % 以随机方式初始化迭代向量u0
max_iter = iterEdit.Value; % 获取迭代次数

Eps = 1E-4; % 迭代精度
k = 0; % 初始迭代次数
lambda0 = 0;

% 乘幂法迭代,求得矩阵按模最大特征值lambda及其对应特征向量v
while k <= max_iter - 1
v = A * V;
[vmax, i] = max(abs(v));
lambda = v(i);
V = v / lambda;
if abs(lambda - lambda0)<Eps
k = k + 1;
break;
end
lambda0 = lambda;
k = k + 1;
end
end

归一化乘幂法的进一步改进

针对问题3,从其基本情形出发(其他条件与先前保持一致),即有:
$$
\mid\lambda_1\mid=\mid\lambda_2\mid>\mid\lambda_3\mid\geqslant\cdotp\cdotp\cdotp\geqslant\mid\lambda_n\mid,\lambda_1=-\lambda_2
$$
在矩阵按模最大特征值为一对相反数的情况下,原迭代向量序列中各相邻向量的比值极限发散:
$$
\lim_{k\to\infty}\frac{\boldsymbol{u}_{k+1}}{\boldsymbol{u}k}=\lambda_1\lim{k\to\infty}\frac{a_1\boldsymbol{x}_1+(-1)^{k+1}a_2\boldsymbol{x}2+\boldsymbol{\varepsilon}{k+2}}{a_1\boldsymbol{x}_1+(-1)^ka_2\boldsymbol{x}_2+\boldsymbol{\varepsilon}_k}
$$
说明在该种情况下,采用原有的乘幂法基本算法,得到的迭代向量序列并不收敛,无法得到稳定的矩阵按模最大特征值数值求解结果。

我们在原有算法的基础上进行了一定的改进,构造了新的迭代向量序列,使其对于矩阵按模最大特征值为一对相反数的情况也能保证收敛,从而可以对该情况下的矩阵按模最大特征值进行有效求解。

阅读更多

产品质量管理项目

摘要

本项目的核心任务是通过统计过程控制(SPC)方法,对某工厂生产的滚珠直径数据进行产品质量管理,评估产品工艺水平及其生产过程是否受控。统计过程控制作为一种基于概率统计的过程控制方法,自1924年由Shewhart博士提出控制图以来,已广泛应用于现代制造过程的质量控制中。本项目基于Matlab软件开发,对于收集到的数据,通过描述性统计分析、正态性检验、总体均值检验、工序能力指数计算与绘制均值控制图和方差控制图等多种方式,对数据进行全面分析,最终评估工艺水平及生产过程的受控状态。具体而言,首先,在数据收集过程中,结合实际数据与模拟数据,得到25组产品质量样本数据(每组至少5个样本);随后,通过描述性统计分析方法对数据进行宏观的认知,根据均值、方差、极差、直方图等指标对数据进行初步分析;接着又利用假设检验的方法,分别通过Pearson卡方检验与t检验等方法验证数据是否符合正态分布,并对其总体均值进行检验。基于对于正态总体及其均值、方差的检验合理性,最终计算并评估了数据的工序能力指数,同时绘制了均值控制图和方差控制图,以直观反映生产过程中的数据波动情况。通过多种方法的综合分析,最终得出了工厂生产的滚珠直径的工艺水平评价和生产过程的受控状态判断。

关键词: 产品质量管理、统计过程控制(SPC)、假设检验、Shewhart控制图、Matlab

项目概述

问题背景

现代产品质量管理主要有两个核心目标:第一,评价产品的工艺水平如何,即产品质量如何;第二,评价产品的生产过程是否受控,即产品可靠性如何。从现代质量控制的角度看,一方面要求产品质量好,另一方面还要求可靠性高。

统计过程控制(Statistical Process Control, SPC)是一种基于概率统计的过程控制方法。1924年美国贝尔实验室的Shewhart博士提出控制图,标志着产品统计质量控制的正式起点。作为现代质量管理的重要方法,SPC广泛应用于现代制造过程的质量控制。20实际80年代,国际上半导体制造过程已经普遍采用SPC技术提升产品合格率和可靠性。比如Motorola公司提出并在美国通用电器公司等广泛应用的6σ管理,其主要技术基础就是SPC理论。

生产过程是否处于统计受控状态,取决于生产过程是否存在异常因素导致产品质量的起伏变化。产品加工结果是否满足加工规范要求,反应的是工艺水平的高低;而工艺是否受控,反应的是生产过程是否存在异常因素。

项目任务

在本次项目中,需要收集批量产品质量数据,利用SPC方法对其进行管理,分析整体工艺水平并判断生产过程是否处于统计受控状态,具体而言可细分为如下任务:

  • 任务 1:收集或生成25组以上的数据,每组至少5个样本。

  • 任务2:根据均值,方差,极差,直方图等指标,对数据进行描述性统计分析。

  • 任务 3:对数据进行正态性检验与总体的均值检验。

  • 任务 4:计算数据工序能力指数并对其进行评估。

  • 任务 5:描绘均值控制图和方差控制图。

  • 任务 6:得出结论:工艺水平如何;生产过程是否处于统计受控状态。

项目过程

本项目完全基于Matlab代码实现SPC方法进行产品质量管理。

数据收集

本项目中的数据收集采用实际数据与模拟数据结合的方式,其中实际数据以书本7.4节的例题7.4.4[^1]为主要来源,在此基础上利用生成的模拟数据对其进行扩充,最终得到25组产品质量样本数据,每组中含有5个数据。

具体而言,本项目的问题情境为对工厂生产的滚珠直径(单位:$mm$)进行产品质量管理。书本上的例题提供了50个直径数据,将其作为扩充生成模拟数据的源数据source_data,即:

1
2
3
4
5
6
7
8
9
10
source_data=[15.0,15.8,15.2,15.1,15.9,
14.7,14.8,15.5,15.6,15.3,
15.0,15.6,15.7,15.8,14.5,
15.1,15.3,14.9,14.9,15.2,
15.9,15.0,15.3,15.6,15.1,
14.9,14.2,14.6,15.8,15.2,
15.2,15.0,14.9,14.8,15.1,
15.5,15.5,15.1,15.1,15.0,
15.3,14.7,14.5,15.5,15.0,
14.7,14.6,14.2,14.2,14.5];

设置扩充后的数据组数num_groups以及各组样本数据个数samples_per_groups:

1
2
num_groups = 25;
samples_per_group = 5;

两者相乘得到样本数据总数num_data_points:

1
num_data_points = num_groups * samples_per_group;

要对原始数据进行扩充,首先需要复制原始数据并添加随机扰动:

1
2
replicated_data = repmat(source_data, 1, ceil(num_data_points / length(source_data)));
perturbed_data = replicated_data(1:num_data_points) + 0.05 * randn(1, num_data_points);

接着使用插值生成更多数据点,并保留一位小数:

1
2
3
4
x = 1:length(perturbed_data);
xi = linspace(1, length(perturbed_data), num_data_points);
interpolated_data = interp1(x, perturbed_data, xi, 'spline');
interpolated_data = round(interpolated_data, 1);
阅读更多

商场火灾场景下救灾机器人抓取目标救援对象的距离特性研究

摘要

本报告主要探讨了救灾机器人在人机交互和远程控制平台设计中的距离特性问题。通过Unity软件搭建模拟实验平台,并收集操作人员在操作机器人”抓取”持续运动的目标救助人员时的相关数据,基于Matlab软件进行数据分析,挖掘用户潜在的操作习惯与背后的操作逻辑规律。研究表明,在机器人与目标救援人员为相遇(拦截)关系的前提下,通过摄像头远程返回影像做出抓取判断时的决策距离与待救援人员运动的速度成正相关,而与机器人移动的速度成负相关。这些发现对未来进一步改进远程救援控制平台的设计及机器人相关物理参数的优化具有重要意义。

关键词: 救灾机器人、人机交互、距离特性、Unity、Matlab

Introduction

救灾机器人是在安全生产和防灾减灾救灾过程中,执行监测预警、搜索救援、通信指挥、后勤保障、生产作业等任务,能够实现半自主或全自主控制,部分替代或完全替代人类工作的智能机器系统的总称。救灾机器人具有感知、决策、执行等特征,可提升复杂危险场景中生产和救援的效率与安全性。地震、火灾、核泄漏等事故发生时,由于事故现场环境复杂、风险因素较多,同时可能伴有次生灾害,因此现在越来越多的事故现场救援初期采用救灾机器人进行现场救援。救灾机器人的发展与应用,代表了应急管理装备现代化发展趋势,是衡量我国应急管理体系与能力现代化的重要标志。

常见的火灾救灾机器人(如下图)主要由以下几个基本部分组成:

  • 行走机构:用于在复杂的地表环境下行走。

  • 影音采集机构(如摄像头等):用于采集复杂环境下的环境信息。

  • 机械臂:用于远程操控执行部分操作。

在救灾机器人的实际使用过程中,一般通过无线通信的方式将救灾现场的影音信息远程传送给操作人员,并由操作人员对于机器人进行一系列操作,包括控制机器人的行走路径、通过机器人的机械臂进行障碍物移除、爆炸物拆除等操作,这些操作也往往通过远程控制平台实现。因此,设计一个能与机器人自身操作特性(尺寸等参数)良好契合且操作效率与精准度较高、简洁易用的远程救援控制平台是提高救援成功率的关键。

在远程救援控制平台的设计过程中必不可少地需要关注到人机交互的相关问题。一个值得注意的问题是,操作人员对于救灾机器人的物理参数可能相对了解较少,特别是在只能借助于机载摄像头对周围环境进行观察的情况下,无法通过摄像头远程返回的画面精准判断机器人与目标救助人员(多为行动不便)之间的距离,从而可能会因为二者的交互失败导致目标救助人员无法通过搭乘救灾机器人实现逃生,使得救援成功率不理想,甚至可能会由于机械臂的误操作等对目标救助人员造成二次伤害,这是我们所不希望看到的。因此,希望通过收集操作人员(用户)在模拟实验平台中操作机器人”抓取”持续运动的目标救助人员时的相关数据,分析用户的操作习惯,从而更好地指导远程救援控制平台的设计以及机器人相关物理参数与摄像头摆放位置等的改进。

Literature Review

文献1[^1] : The different characteristics of human performance in selecting receding and approaching targets by rotating the head in a 3D virtual environment

综述: 初始距离、目标移动速度和目标容差对于操作的准确性影响较大。初始距离会影响抓取操作的时间特性,在远离运动中,需要以高于目标速度追击目标,而靠近运动中则需要拦截目标。目标移动速度增大会增加抓取难度,特别是在远离运动中,影响更为显著。目标容差主要影响调整阶段,影响抓取精度,但不影响加速和减速阶段。

文献2[^2]: Beyond Fitts’s Law: A Three-Phase Model Predicts Movement Time to Position an Object in an Immersive 3D Virtual Environment

综述: 理解距离特性对三维场景下的准确抓取来说至关重要。目标定位任务在三维虚拟环境中的特点明显不同于二维界面。例如,三维空间中的目标操作涉及大范围的手臂移动和虚拟手或射线投射技术。研究指出,人类的目标导向手臂运动包括快速的弹道阶段和慢速的修正阶段,这两个阶段在不同的因素影响下表现各异。此外,目标大小、运动幅度和目标容差是影响定位时间的主要因素,这些因素在三维环境中与传统的二维环境有所不同。

文献3[^3]: Capture of moving targets: amodification of Fitts’ Law

综述: 该文章主要描述了一个根据Jagacinski等人的实验数据开发的数学模型,用于描述移动目标的捕获时间。该模型在位置和速度控制系统下都经过了测试,并且与实验数据拟合良好。在移动目标下,该模型对Fitts定律的主要修改在于稳态位置误差,从而减小了有效目标宽度。在静止目标情况下,该模型退化为经典的Fitts定律。该模型预测了一个临界速度,超过这个速度目标将无法被捕获,这与Jagacinski等人的实验数据相符,可用于理解救灾机器人在不同速度下捕获目标的效率和限制。

文献4[^4] : 面向人机交互的机器人信息融合系统的研究与实现

综述: 本篇文章主要探讨了在人机交互中,利用多传感器信息融合技术提升机器人对人体目标跟随的效率和精度。作者提出了一个面向人机交互的机器人信息融合系统,包括人体感知、视觉跟踪和运动跟随模块。通过运用帧间差分法和骨架验证识别人体目标,利用小波变换融合深度图像和反向投影图提高视觉跟踪精度,并采用位姿信息融合方法实现运动跟随。这些技术和系统设计有助于提升机器人在火灾场景下抓取目标救助对象的距离检测的精准性。

文献5[^5] : 三维虚拟空间中物体移动操作的交互模型

综述: 这项研究通过三个实验系统探讨了影响3D空间物体移动效率的因素,并建立了相应的数学模型。研究发现,除了传统的移动距离和目标大小外,被移动物体的大小和所处深度也影响移动效率。实验结果表明,移动物体的大小影响移动过程中的加速阶段,而移动物体所处的深度则影响整体移动时间。通过以视角为单位的修正模型,研究者成功地拟合了实验数据,提高了移动操作效率的预测准确性。这一研究成果为虚拟3D空间中的人机交互设计提供了有益的参考,可为设计更有效的救灾机器人操作策略提供理论支持。

文献6[^6] : 虚拟运动目标人机交互方法设计与仿真

综述: 这项研究提出了一种基于多体感融合的虚拟运动目标人机交互方法,以解决当前虚拟手型逼真度偏低的问题。利用Kinect采集深度图像和彩色图像,结合颜色直方图匹配结果,实现了对虚拟运动目标的准确识别和跟踪。通过提取目标结构信息并融合全部体感特征,构建了笛卡尔空间映射关系,以实现人机交互。仿真结果显示,该方法不仅能够获取高逼真度的虚拟手型,还能够准确跟踪和识别目标,为解决商场火灾场景下救灾机器人抓取目标救助对象的距离特性提供了实用性解决方案,使虚拟实验平台上的交互操作在现实中成为可能。

▼ 文献7[^7] : 救灾机器人远程操作控制台设计

综述: 本篇文章强调了在各种灾难中,特别是火灾等复杂环境下,使用消防机器人进行救援的必要性,从消防救援的角度出发,针对地震、火灾、核泄漏等灾害提出了机器人功能需求,并结合人因工程学等相关学科知识,从宏观层面探讨了远程操作平台的构建方法,并给出了一些关键的参考数值,为实验平台的搭建提供了指导性的重要参考。

阅读更多